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E M I T T A N C E  B E A M  
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We formulate and solve the problem of  optimal management  for the equations of  the dynamics of  a Gaussian 

high-current relativistic electron beam in magnetic f ields with a quadrupole and octupole symmetry and 

present the results of  numerical simulation. 

Introduction. The production of intense relativistic beams with a minimum transverse emittance is at 

present one of the basic problems in the physics of bundles of charged particles [1, 2 ]. Using the method of moments 

of a distribution function, a system of differential equations is obtained in [3 ] for describing the dynamics of a 

Gaussian high-current electron beam in magnetic fields with a quadrupole and octupole symmetry with account for 

the 4th-degree nonlinearity. In what follows, for this system of equations we formulated and solved the problem 

of optimal management of the parameters of a focusing system to obtain transport of a beam with the minimum 

possible transverse emittance at the outlet from a channel. 
Momental Equations. We consider a relativistic beam of electrons with charge q and mass m moving along 

the z axis with velocity v 0 in magnetic fields with quadrupole and octupole components, for example, transport of 

a beam in a channel formed by quadrupole lenses with account for their edge effects (nonlinear octupole component 

of a focusing field). The beam is assumed to be a high-current one, but its current I does not exceed the Alfv~n 
current In = f lymca/q,  where 7 = 1/v'T - f12, fl2C2 = (6 2 + j~2 + ~2). Therefore, the motions of particles in the 

longitudinal and transverse directions are decoupled, and in the linear approximation for small terms x' -- J/J~ and 

y' = j,/~ (the superscript dot denotes the derivative with respect to t) for the velocity of an arbitrary particle of the 

beam we have v = ~ -- v 0. It is assumed that the shape of the beam in the cross section is close to elliptical, i.e., 

the distortions of elliptical lines of the constant level of charge density due to the nonlinearity of intrinsic and 

external fields are the 2nd-order effects. 
The change in the transverse root-mean-square quantities ~'= vr~-x 2 and ~'= ~ and the mean coordinates 

of the beam ~ and ~ along the focusing channel is described by the equations for the 2nd-order moments [3 ]: 
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where Px = 5¢2, Py = ;2. The dot denotes the derivative with respect to the independent variable z: r E [To; 

To + T], where T = P / S ,  S is the period of the focusing structure; P is the transport length, dr = d z / S  = 

(vo /S )d t .  The gradient of a separate quadrupole and the second derivative (with respect to z) of the gradient are 
denoted by g and g', respectively. 

The 4th-order moments x2y 2, x2y3:, y2xj¢ are determined from the system of equations 

"hi = b3 + ayb7 + 2b8, b4 = 2axb2 + 2b5,  b7 = 2bl + 2b2, 

"b2 = b4 + axb7 + 2b8, b5 = ayb4 + 2axb8 + b9, "b8 = axbt + ayb2 + b5 + b6,  (2) 

b3 = 2aybl + 2b6, b6 = axb3 + 2ayb8 + b9, b9 = 2axb5 + 2ayb6, 

where 
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The 3rd-order moments xy  2, yx 2, x 3, y3 are determined from the expressions 
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The coefficients Ci (i = 1 . . . .  ,6)  are constant along the step l of numerical integration of system (1); they 

are connected with the coefficients of polynomial expansion of the space-charge field potential 

beam + C02 (z) + C40 (z) + C04 (z) + C22 (7.) x y.  ~o (x, y, z) = C01 (z) x 2 y2 x 4 y4 2 

by the relationships C1 = -C20, C2 = -C40, C4 = -C02, C5 = -C04, C3 = C6 = - C 2 2 .  

Optimization of the Focusing-System Parameters. The problem of optimal management is prescribed by 
the equations of state and phase limitations that determine the behavior of the object, as well as by the quality 
criterion [4 ]. In the case considered, the equations of state involve a system of 2nd-order differential equations (1) 

together with a system of lst-order differential equations (2) and expressions (3). The phase limitations determine 
the region of the change in unknown functions, independent variable, and managing parameters. The latter are 

considered to be the values of the quadrupole lens gradient and of its second derivative. 

Let us formulate the problem of optimal management: determine the parameters  o f  quadrupoles  ( the  gradient  

o f  a lens, the s econd  derivative o f  the gradient )  as func t ions  of  the longi tudinal  coordinate  z that ensure  the 

product ion of  a beam with the m i n i m u m  possible transverse emittance. 

We will rewrite the system of equations (1)-(2) in the form 
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dZ 
dr - / ( r ' z ( r ' u ) ' u ( r ) ) '  0 < T < T ,  (4) 

where 

Z(T, u) = {x-, x, y, Y, Px, Py, x, x y ,  y, b I , b 2, b 3, b 4, b s, b6. b 7 b 8, b9}; u(r)  = {g(r, g"(z)}.  

With r = 0 and prescribed management  uo(r) ,  the initial condition for (4) is assumed in the form Z(0,  

uo(0)) = Z o. First, we will not impose any  limitations on the values of phase changes  for 0 < • < T. The  l imitation 

on the m a n a g e m e n t  u( , )  is p resen ted  as al < g(z) <-/31, a2 -< g"(z) </32, where  a l ,  a2 de t e rmine  the lower 

boundaries  of the region of change in the management  and flz,/32 de te rmine  the upper  boundaries .  

We will consider  the problem of determining the management  u(t) and trajectory Z(t)  that deliver the 

minimum to the functional ~P(Z(t, u)) = dp(t, Z(t ,  u), u(t)) at t = T (Mayer ' s  problem).  As a minimizing functional,  

we will consider  

~ 2  M2 - - 2  N2  ~ 2  ;...2 
dP (Z ( t ,u ) )  = x p x -  X x + y p y - y  y (5) 

To  solve the problem set, we will use Pont ryag in ' s  max imum principle [5], which makes  it possible to 

reduce the problem of optimal management  to a special boundary-value  problem for  a sys tem of ord inary  differential  

equations. 

It is known that  for problems with a free end there is general ly no procedure  for obtaining an exact solution. 

However,  if the initial sys tem of equations is l inear in phase  variables and  no limitations are imposed on the right 

end of the t rajectory,  then in such a case the problem of optimal managemen t  with a free end is reduced to the 

solution of two Cauchy problems for conjugated and  initial sys tems of equations with account for the condition of 

the max imum for the Hamil ton function [51. 

To solve the above-formula ted  nonl inear  terminal  (with a fixed time) problem with a fixed left end and  

free right end,  we shall make  use of the B r i s on -S h a t rovsky  method 14 ]. This  i terative method at each step operates  

with "dispatching management"  u.( t)  and with the corresponding "dispatcher  solution" Z. ( t )  of the equations of 

state. The  convergence of this method is ensured by the concavity of the Hamil ton  function toward u(t) and the 

convexity of the mult i tude of admissible  managements  U [6 ] which is valid for the problem formulated.  Then ,  for 

any  initial admiss ible  management  u.( t)  and corresponding solution Z . ( t ) ,  this method determines  a sequence of 

managements  uk G U such that  II uk - u0 II -" o, when k --, oo in the norm of the space LZ(0, 7') of the functions 

integrable with a square,  where  u0 is the desired management  that satisfies the max imum principle. 

We shall  descr ibe  the s tep of i terat ion of the method  for sys tem (4). Using the new var iables  Zl  = 

Z - Z .  and Ul = u - u. ,  we linearize the initial sys tem of equations (4) at fixed values of Z . ,  u.  and  write for it 

the following Cauchy problem: 

Z'I = A ( t )  Z 1 + B ( 0 U l ,  (6) 

z~ (o) = o .  (7) 

We calculate the quality criterion gradient  and write the Cauchy problem for a conjugated system: 

0~o - - A ( t ) T ~  (8) 
Ot 

~p (T) = - grad dp (Z (T, u . ) l z = z . .  (9) 

The  Hamil ton function for the linearized problem can be represented  in the form of a scalar  product  of the 

functions Zl( t ,  ul) and ~O(t): 
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H (t, Z 1 (t), ~ (t), U 1 (1)) = (~, AZI) + (~l', B/21) • 

The maximum principle V t E [to, T]  has the form 

(~ (t), B (t) u I (0)  = max (~ (t), B (t) u I ( t ) ) .  (10) 
u. +Ul GU 

For the value of ul selected, a decrease in the quality criterion J = ~ ( Z l  (T, Ul)) occurs on satisfaction of 

the inequality 

5J  < O. (11) 

Since the problem of determining the minimum of the functional ~I,(Z(T, u)) is not identical to the problem 

of minimization of the functional J ,  together with condition (1 I) it is necessary also to check the condition 

a, (z (T, u) < ,I, (z .  (r ,  u.)).  (12) 

By virtue of the fact that for the physical system considered (a beam in focusing magnetic fields) there are 

actual limitations on the coordinates and velocities of the SREP particles (along the entire t ransport  channel  the 

beam radius must not exceed the transverse dimension of the vacuum tube r 0, whereas the absolute values of the 

transverse velocities of particles are always smaller than v0), within the framework of the above-formulated problem 

of optimal management,  phase limitations appear that are imposed on system (4). The  removal of the indicated 

limitations will be made by the method of penalty functions [4 ]. We will modernize the quality criterion by having 

incorporated into it the integral penalty term: 

T.  

~1 (Z (T, u)) = • (Z.(T, u)) + f dt Q'I [(xb -- ~.)2 0 ( x" -- Xb) + (Yb -- ~-)2 0 ( ~"-- Yb) l + 
0 

+ 2 2 [(v b --  px)  2 0 (Px -- Vb) + (,Ub -- py)2 0 (py -- ktb) ] ) ,  ( 5 ' )  

where O(x) is the Heaviside theta function; xt~ = r0, Yb = r0, vb = v0, ktb = v0. At the beginning of the process of 

i teration, the penal ty coefficients 21,~.2<< 1. Th e y  increase in the course of i terat ions until  ~', ~,Px, and  py 
completely satisfy the limiting conditions or until we see that solution of the problem does not exist under  the given 

limitations. 

An 

as follows: 
(a) 

(b) 

(c) 

algorithm for computing the solution of the formulated problem of optimal management  can be described 

fix the "dispatching management" and find the "dispatcher solution" of the initial system (4); 

write the linearized system (6)-(7); 

solve the Cauchy problem (8)-(9) from right to left for ~v(t); 

(d) according to the maximum principle (10), select the variation of the management  c3u and find the new 

magnitude of the management  u (1) = u. + 5u; 

(e) integrate system (4) from left to right and determine Z(t, u(D(t)) ;  

(f) find the value of the functional ep(Z(T, u(t)(t))) according to (5') on a certain solution Z(t, u(l)(t)) 
corresponding to the selected management  u (1) and check condition (12). 

If condition (12) is satisfied, the quality criterion is decreased. In such a case, we take the management  

found as a new "dispatching management" and repeat the above procedure beginning from the first step. If condition 

(12) is not satisfied, we gradually decrease the variation of the management  by a factor of two and check the vectors 

u (2) = u. + (1 /2)5u ,  u (3) = u.  + (1 /4)5u ,  etc., repeating the above procedure, starting from the fourth step. 

Thus ,  the search for the solution of the formula ted  nonl inear  terminal problem incorpora tes  global 

management  i terations,  associated with finding a series of "d i spa tcher  solutions," and local i terations on the 

variation of management  as a version of descent in minimization of c3J. 
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Fig. 1. Disposition and magnitude of the gradients of quadrupole lenses along 

the focusing channel: 1, 2) initial and optimal parameters  of the focusing 

system, z, m; g, T / m .  

Fig. 2. Root-mean-square  dimensions of the beam transported:  1, 2) initial 

and optimal parameters of the focusing system. ~', ~, m. 

The iteration process is repeated until ei ther the antigradient  of the quality criterion, calculated on the 

right end, becomes positive (in this case, the optimality of the solution obtained in the last i teration follows from 

the assumption of the uniqueness of the solution of the problem [4 ] and of the convergence of the method proved 

in [6 ]) or simultaneously the following two conditions are not fulfilled: 

1. The  relative error  of the quality criterion calculated in successive iterations is smaller than the prescribed 

epsilon 1 (the optimum solution is found within the prescribed accuracy).  

2. The  absolute value of the management  variation became smaller than epsilon 2 (successive values of 

managements  differ  within the limits of the prescribed accuracy and fur ther  optimization leads to a change in the 

quality criterion within the error  of calculation). 

Integrat ion of the system of differential  equations in each iteration is performed numerical ly by the 

R u n g e - K u t t a  4 th-order  method. The solution of the problem of optimal management  by the parameters  of a 

focusing field is implemented in the SREP program. 

Results of Optimal Management .  As an example, we shall consider the transport ,  by quadrupole multiplets, 

of an electron beam with the following parameters:  the current 1 = 1 kA, the energy of particles E = 1 MeV, ~'(0) 

= y'(0) = 2.5 cm, ~(0) --7(0) -- 0, the scatter over transverse velocities amounts  to 1% of the value of the longitudinal 

velocity. 

The  graphs of the prescribed initial and obtained optimal values of the gradients of quadrupole lenses g 

are presented in Fig. 1. In the course of optimization, the value of g", which characterizes the nonl inear i ty  of the 

focusing field, turns out to be identical for all the sections of the transport  channel and equal to - 0 . 2  T / m  3. This 

seems to be associated with the fact that for this example the quadratic terms in the expansion /obeam(x, y, z) 

considerably exceed the 4 th-order  terms and a partial compensation of the increase in the beam emit tance due to 

the nonlinearities of the field of the space charge is possible by the constant function g". The  value of the functional 

(5) for the beam at the outlet of the transport  channel in the case of the prescribed initial management  is equal to 

J = 1.875.10 -7 (m-rad)2;  the optimal configuration of the focusing fields gives ./opt = 1.874-10 -7 (m ' r ad )  2. To 

obtain this result, 74 global iterations were carried out by the SREP program. 

The graphs of the change in the mean-square dimensions of the beam along the transport  channel  that 

correspond to the prescribed and optimal parameters of quadrupoles are presented in Fig. 2. It is seen from the 

graphs that owing to optimization by transporting in the presence of nonlinearities of focusing and space-charge 

fields, it is possible to decrease the radius of the beam without increasing its transverse emittance. 

The correctness of the above-formulated problem of optimal management  confirms the following fact. When, 

for the example considered,  optimal management  was selected as a prescribed initial management  (g is prescribed 
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in the form of a piecewise-constant function according to curve 2 of Fig. 1 and g" = -0 .2  T/m3), the SREP program 

performed a single global iteration and the prescribed management is issued as optimal management. And here 
again ./opt = 1.874- 10 -7 (m-rad) 2. 

Conclusion. We note that, generally speaking, the obtained solution of the above-stated nonlinear problem 

of optimal management will not satisfy the maximum principle, since with the use of gradient methods the 

approximation to the optimal management breaks down in the class of relay (boundary) managements [7 ]. How- 

ever, owing to the convergence of the iteration process [6 ], it is possible to attain a situation where the difference 

between the optimum value of the quality criterion (5) and that obtained by the method indicated will be arbitrarily 

small. 
The work on this topic for the first author was supported by the Fundamental Research Fund of the 

Republic of Belarus, grant No. 94-41. 
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